Humidity effect on coefficient of static friction of rosemary and lavender by friction - electric meter

Document Type : Original article


Department of Agricultural Mechanic, Razi University of Kermanshah, Kermanshah, Iran;


Background & Aim: Increasing economic role of medicinal herbs in recent society and complexity of modern technologies in production (planting and harvesting), transportation, storage, processing, quality evaluation, distribution, marketing and consumption of these products require a thorough understanding of their physical properties. Coefficient of friction of plant on the various surfaces is needed in designing of silos, storage of agricultural products and handling equipment, such as conveyors, and design of other equipment used in post harvest processing. Experimental: In this study, static coefficient of friction for two values of water content (wet basis) 58% and 53% for rosemary and, 65% and 63% for lavender on three surfaces, galvanized steel, glass and wood was investigate. For this purpose an apparatus made that includes an electrical motor and an optical sensor for precise measurement of the slipping moment of the product and its coefficient of friction. Results & discussion: Average values of maximum and minimum of static coefficient of friction that obtained for rosemary at 58 percent of water content were 0.87 on the wood surface and 0.46 on the glass, respectively. While at 53 percent water content, the maximum and minimum average values of coefficient of static friction obtained for rosemary were on wood, 0.66 and glass 0.38, respectively. The minimum average value of coefficient of friction for the lavender at 65 percent water content was 0.66 and on the glass however after the reduction of water content, at 63 percent water content, obtained 0.56 on the glass, too. Industrial and practical recommendations: The understanding of the engineering properties of herbal drugs for creating appropriate industrial procreation methods is of great importance.


Article Title [فارسی]

تأثیر رطوبت بر ضریب اصطکاک استاتیکی رزماری و اسطوخودوس به وسیله اصطکاک سنج الکتریکی

Authors [فارسی]

  • فرزاد جلیلیان تبار
  • رشید غلامی
  • علی نجات لرستانی
گروه مکانیک ماشین های کشاورزی، دانشگاه رازی کرمانشاه، کرمانشاه، ایران؛
Abstract [فارسی]

مقدمه و هدف: افزایش روزافزون نقش اقتصادی گیاهان دارویی در جوامع امروزی، پیچیدگی فن­آوری های جدید برای تولید (کاشت، داشت و برداشت)، حمل و نقل، ذخیره سازی، فرآوری، نگهداری، ارزیابی کیفی، توزیع، بازاریابی و مصرف این محصولات، نیازمند درک دقیق و صحیح خواص فیزیکی آن­هاست. ضریب اصطکاک گیاهان بر روی سطوح مختلف، در طراحی سیلوها و مخازن نگهداری محصولات کشاورزی، تجهیزات انتقال از قبیل تسمه نقاله ها و نیز در طراحی دستگاه­های مورد استفاده در فرآوری پس از برداشت مورد نیاز می­باشد. روش تحقیق: در این تحقیق ضریب اصطکاک استاتیکی در دو سطح رطوبتی 58 و53 درصد بر پایه تر برای گیاه رزماری، 65 و 63 درصد بر پایه تر برای اسطوخودوس، بر روی سه سطح ورق گالوانیزه، شیشه و چوب چندلا مورد بررسی قرار گرفت. برای این کار دستگاهی ساخته شد که شامل یک موتور الکتریکی و سنسورهای نوری برای سنجش دقیق زمان سر خوردن محصولات و محاسبه ضریب اصطکاک آن­ها بود. نتایج و بحث: بیشترین و کمترین مقدار میانگین ضریب اصطکاک استاتیکی به­دست آمده برای رزماری در رطوبت 58 درصد بر پایه تر به ترتیب بر روی چوب چندلا،  0.87 و شیشه 0.46 بود. در حالی ­که در رطوبت 53 درصد بر پایه تر، بیشترین و کمترین مقدار میانگین ضریب اصطکاک استاتیکی به­دست آمده برای رزماری به ترتیب بر روی چوب چندلا،  0.66 و شیشه، 0.38 بود. این کاهش ضریب اصطکاک برای اسطوخودوس نیز بدین صورت به­دست آمد که کمترین میانگین ضریب اصطکاک در رطوبت 65 درصد بر پایه تر بر روی شیشه و برابر با 0.66 بود در حالی­که در رطوبت 63 درصد بر پایه تر نیز بر روی شیشه اما برابر با 0.56 به­دست آمد. توصیه کاربردی/ صنعتی: شناخت خواص مهندسی گیاهان دارویی برای ایجاد روش­های فرآوری صنعتی مناسب، امری  ضروری به شمار می آید.

Keywords [فارسی]

  • پس از برداشت خواص مهندسی فرآوری حمل و نقل
آزادمهر، ع. حاجی آقایی، ر. رضازاده، ش. افشاری، ا. کیانی امین، م، برادران، ب. ابراهیمی، پ. 1390. بررسی اثر عصاره اسطوخودوس بر تکثیر لنفوسیتی و سایتوکاین فاکتور نکروز دهنده تومور آلفا. فصل­نامه گیاهان دارویی، 10: 147-142 .
Angioni, A., Barra, A., Cereti, E., Barile, D., Coisson, J.D., Arlorio, M. and et al. 2004. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. J Agric Food Chem., 52: 3530-3535.
Inoue, K., Takano, H., Shiga, A., Fujita, Y., Makino, H., Yanagisawa, R. and et al. 2005. Effects of volatile constituents of a rosemary extract on allergic airway inflammation related to house dust mite allergenin mice. Int Mol Med J., 16 (2): 315-319.
Khodabakhshian, R., Emadi, B. and Abbaspour Fard, M. H. 2010. Frictional behavior of sunflower seed and its kernel as a function of moisture content, variety and size. J. Agric. Sci. Technol., 4: 83-94.
Razavi, M.A., Rafe, A., Mohammadi Moghaddam, T. and Mohammad Amini, A. 2007. Physical properties of pistachio nut and its kernel as a function of moisture content and variety. J Food Eng Res., 56: 89-98.
Nalbandi, H., Ghassemzadeh, H.R. and Seiiedlou, S. 2010. Seed moisture dependent on physical properties of Turgenialatifolia: criteria for sorting. J Agric Tech., 6 (1): 1-10
Peng, Y., Yuan, J., Liu, F. and Ye, J. 2005. Determination of active components in rosemary by capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal., 39: 431- 437.
Sessiz, A., Esgici, R. and Kizil, S. 2007. Moisture-dependent physical properties of caper (Capparis ssp.) fruit. J Food Eng., 79: 1426-1431.
Sotelo-Felix, J.I., Martinez-Fong, D. and Muriel, P. 2002. Protective effect of carnosol on CCl (4)-induced acute liver damage in rats. Eur J Gastroenterol Hepatol., 14: 1001-1006.
Subramanian, S. and Viswanathan, R. 2007. Bulk density and friction coefficients of selected minor millet grains and flours. J Food Eng., 81: 118–126
Swain, A.R., Dutton, S.P. and Truswell, A.S. 1985. Alicylates in foods. J Am Diet Assoc., 85: 950-960.
Taddei, I., Giachetti, D., Taddei, E. and Mantovani, P. 1988. Spasmolytic activity of peppermint, sage and rosemary essences and their major constituents. Fitoterapia., 59: 463-468.
Tunde-Akintunde, T.Y., Akintunde, B.O. and Oyelade, O.J. 2007. Effect of moisture content on terminal velocity, compressive force and frictional properties of melon seeds. CIGR Journal., 9: 7- 22.
Valenzuela, A., Sanhueza, J., Alonso, P., Corbaria, A. and Nieto, S. 2004.  Inhibitory action of conventional food-grade natural antioxidants and natural antioxidants of new development on the thermalinduced oxidation of cholesterol. Int J Food Sci Nutr., 55: 155-162.
Yalcin, I., ozarslan, C., and T. Akbas. 2007. Physical properties of pea (Pisum sativum) seed. J Food Eng., 79: 731- 735.
Zaalouk, A.K. and  Zabady, F. I. 2009. Effect of moisture content on angle of repose and friction coefficient of wheat grain. J Agric Eng., 26: 418-427.