Interactive effects of salicylic acid and cold stress on activities of antioxidant enzymes in Glycyrrhiza glabra L.

Document Type: Original article

Authors

1 MSc Student of Plant Physiology, Department of Biology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran;

2 Associate Professor of Bu-Ali Sina University, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran;

Abstract

Background & Aim: Glycyrrhiza L. (Fabaceae) consists of perennial herbs grow in sandy soils with hard lightness. Three species of the genus grow in Iran, among them G. glabra L. has the widest distribution. It is well known in English as Licorice and the root extract includes flavonoids and glycyrrhizin are used widely in medicine, food industry, tobacco products and other industries. Liquiritin and glabridin are the major constituents of flavonoids in its extract, which have quasi estrogenic, ant oxidative, anti-helicobacter, anti-nephritic activities and ROS scavenging.
Experimental: In this research, the interactive effects of salicylic acid (SA) with cold stress on some antioxidant enzymes such as peroxidase (PRX) and polyphenol oxidase (PPO) were studied by spectrophotometric method in a factorial experiment of completely randomized design with three replications. SA pretreatments were included 10, 50, 100 and 500 µM and three levels of cold stress, 5, 10 and 20h in 4 oC were applied.
Results & Discussion: The results showed that cold stress did not affect PPO activity, while SA decreased it. In addition, PRX activity was decreased with increasing cold stress and SA resulted in similar response at this condition. It seems that SA can considerably alleviate oxidative damage that occurred under cold stress condition with direct scavenging of reactive oxygen species. Thus it resulted in decrease activity of antioxidant enzymes.

Keywords


Article Title [Persian]

اثر بر هم کنش سالیسیلیک اسید و تنش سرما بر فعالیت آنزیم های آنتی اکسیدانی در گیاه شیرین بیان (Glycyrrhiza glabra L)

Authors [Persian]

  • نرگس سلطانی دلربا 1
  • رویا کرمیان 2
  • مسعود رنجبر 2
1 دانشجوی کارشناسی ارشد فیزیولوژی گیاهی گروه زیست شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان، ایران؛
2 دانشیار فیزیولوژی گیاهی، گروه زیست شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان، ایران؛
Abstract [Persian]

مقدمه و هدف: جنس شیرین­بیان (Glycyrrhiza) متعلق به تیره Fabaceae، دارای گیاهان علفی چند ساله با سه گونه در ایران است که در بین آن­ها G. glabra L. بیشترین پراکنش را در سطح ایران دارد. عصاره ریشه آن در سراسر دنیا کاربرد وسیعی در پزشکی، صنایع غذایی، دخانیات و صنایع دیگر دارد. ترکیب اصلی این گونه شامل فلاونوئید­ها و گلیسیریزین است. Glabridin و Liquiritin بخش عمده فلاونوئید­های این عصاره را تشکیل می­دهند که واجد فعالیت شبه استروژنی، آنتی­اکسیدانی، آنتی هلیکو­باکتر، آنتی­نفریتیک و مهارکنندگی رادیکال­های آزاد می­باشند. در این تحقیق اثر برهم کنش سالیسیلیک اسید با تنش سرما بر فعالیت برخی آنزیم های آنتی اکسیدانی مانند پراکسیداز ‏‏(‏PRX‏) و پلی فنل اکسیداز (‏‎(PPO‎‏ به روش اسپکتروفتومتری و بر اساس آزمایش فاکتوریل در قالب طرح کاملاً تصادفی ‏مورد مطالعه قرار گرفت.‏
روش تحقیق: جهت انجام آزمایش اعمال تیمارهای سرما و سالیسیلیک اسید (SA)، بذر­ها به مدت 24 ساعت در غلظت­های 10، 50، 100 و 500 میکرو­مولار سالیسیلیک اسید نگهداری شدند. سپس بذرها به محیط کشت MS پایه انتقال یافتند. نمونه­های شاهد تحت تأثیر SA قرار نگرفتند. پس از 2 هفته دانه­رست­های حاصل جهت اعمال تنش سرما به مدت 5، 10 و 20 ساعت در دمای °C 4 قرار داده شدند. تجزیه آماری داده­ها با استفاده از نرم­افزار SAS نسخه 8 انجام شد و مقایسه میانگین ویژگی­ها با استفاده از آزمون دانکن در سطح احتمال 5 درصد انجام شد.
نتایج و بحث: نتایج نشان داد که تنش سرما اثری بر فعالیت آنزیم‌ PPO ندارد و SA فعالیت آن را کاهش می­دهد. هم­چنین با افزایش سطح تنش سرما فعالیت آنزیم PRX کاهش یافت و SA در این شرایط موجب کاهش فعالیت آنزیم شد. لذا ممکن است SA به طور مستقیم در حذف رادیکال­های آزاد نقش داشته باشد و با پاکسازی آن­ها، از افزایش فعالیت آنزیم­های آنتی­اکسیدانی جلوگیری کند. بررسی اثرات تنش­های محیطی بر فعالیت آنزیم­های مهم در مسیرهای متابولیکی گیاه شیرین­بیان، می­تواند در راستای آگاهی از تغییرات کمی و کیفی ترکیبات دارویی این گیاه ارزشمند باشد.
توصیه کاربردی/صنعتی: با توجه به اهمیت دارویی گیاه شیرین­بیان مطالعه اثر دیگر تنش­های اکسیدتیو و القاء کننده­هایی مانند سالیسیلیک اسید در دستیابی به منبعی برای تولید سریع و افزایش ترکیبات ثانویه توصیه می­گردد.

Keywords [Persian]

  • پلی¬فنل¬اکسیداز پراکسیداز تنش سرما سالیسیلیک اسید شیرین بیان

امیدبیگی، ر. 1384. تولید و فرآوری گیاهان دارویی. جلد اول. مشهد: انتشارات آستان قدس رضوی.

پوراکبر، ل. و نوجوان اصغری، م. 1383. بررسی اثر سالیسیلیک اسید در ایجاد مقاومت به سرما در دانه­رست­های تربچه. نشریه علوم دانشگاه تربیت معلم، جلد4، شماره3، صفحات 420-409.

حسینی، پ.، مرادی، ف. و نبی­پور، م. 1387. اثر دمای پایین بر سازوکار آنتی­اکسیدان­های ژنوتیپ­های حساس و مقاوم برنج در مرحله گیاهچه­ای. مجله علوم زراعی ایران، جلد دهم، شماره 3.، صفحات 280-262.

دولت آبادیان، آ.، مدرس ثانوی، ع. م. و اعتمادی، ف. 1387. اثر پیش­تیمار سالیسیلیک اسید بر جوانه­زنی بذر گندم (Triticum aestivum L.) در شرایط تنش شوری. مجله زیست­شناسی ایران، جلد 21، شماره 4، صفحات 702-692.

شجاعی رنجبر، سرور. 1380. بررسی تغییرات لیپیدها و پروتئین­های کالوس آفتاب­گردان در شرایط شوری. پایان­نامه کارشناسی ارشد. دانشگاه تهران.

 

Arfan, M., Athar, H. R. and Ashraf, M. 2007. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Plant Physiology, 6(4): 685-694.

Borsanio, F., Balpuestsa, V.  and Botella, M. A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedling. Plant Physiology, 126: 1024-1030.

Cag, S., Cevahir-Oz, G., Sarsag, M. and Goren-Saglam, N. 2009. Effect of salicylic acid on pigment, protein content and peroxidase activity in excised sunflower cotyledons. Pak. Journal of Botany, 41(5): 2297-2303.

Davis, P. J. 2005. Plant hormones biosynthesis, signal transduction and action. Springer, pp. 22.

Elstner, E. F., Konse, J. R., Selman, B. R. and Stoffer, C. 1976. Ethylene formation in sugar Beet Leaves. Plant Physiology, 58: 215-225.

Klessig, D. F., Durner, J., Noad, R., Navarre, A., Wendehenne, D., Kumar, D., Zhou, J. M., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E. and Silva, H. 2000. Nitric oxide and salicylic acid signaling in plant defense. National Academy of Sciences colloquium, 97: 8849-8855.

Landberg, T. and Greger, M. 2002. Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis. Journal of Plant Physiology, 159: 69-75.

Leubner-Metzager, G., Petruzzeli, L., Waldvogel, R., Vogeli-Lange, R. and Meins J. F. 1998. Ethylene responsive element binding protein (EREBP) expression and transcription regulation of class B-I, 3-glucanase during tobacco seed germination. Plant Molecular Biology, 38: 785-795.

Lichtenhaler, H. K. 1996. Vegetation stress: An introduction to the stress concept in plant. Journal of Plant Physiology, 148: 4-14.

Liu, W., Fang, J., Zhu, W. M. and Gao, P. J. 1999. Isolation, purification and properties of the peroxidase from the hull of Glycine max. Science of Food and Agriculture, 79 (5): 779-785.

Minibaeva, F. V., Gordon, L. K. and Kolesnikov, O. P. 2001. Role of extra cellular peroxidase in the superoxide production by wheat root cells. Protoplasma, 217: 125-128.

Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Science, 7(9): 405-410.

Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology, 15: 473.

Pal, M., Szalai, Z., Horvath, E., Janda, T. and Paldi, E. 2002. Effect of salicylic acid during heavy metal stress. Acta Biologica Szegediensis, 46(3-4): 119-120.

Raymond, J., Pakariyathan, N. and Azanza, J. L. 1993. Purification and some properties of polyphenol oxiases from sunflowers seeds. Phytochemistry, 34: 927-931.

Senaranta, T., Touchell, D., Bumm, E. and Dixon, K. 2002. Acetylsalicylic (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30: 157-161.

Shirasu, K., Nakajima, H., Rajashekar, K., Dixon, R. A. and Lamb, C. 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signal in the activation of defense mechanisms. Plant Cell, 9: 261-270.

Slaymarker, D. H., Navarre, D. A., Clark, D., Pozo, O. D., Martin, G. B and Klessing, D. F. 2002. The tobacco salicylic plays a role in the hypersensitive defense response. National Academy of Sciences colloquium, 99 (18): 11640-11645.

Suzuki, N. and Mittler, R. 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Plant Physiology, 126: 45-51.

Tasgin, E., Atici, O. and Nalbantoglu, B. 2006. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regulation, 41: 231-236.