Effect of salinity on vegetative growth, antioxidant and defensive enzymes in ginger (Zingber officinale Roscoe.)

Document Type: Original article


1 M.Sc, Department of Plant Biology, Science Faculty, Isfahan University, Isfahan, Iran

2 Professor, Department of Plant Biology, Science Faculty, Isfahan University, Isfahan, Iran


Background & Aim: Ginger is common named Zingber officinale Roscoe. belongs to Zingiberaceae family which extensively used to pharmaceutic industries in addition to food industries uses. Dut to Iran is located at world saline lands, salinity is a main problem to native and nonnative plant species cultivation such as ginger and because in plants salinity induces antioxidative and defensive systems, therefor the effect of salinity on ginger was considered in this research. Experimental: This plan was done in a random block design with three replications. Salt treatment was done at four levels by using NaCl in hogland nutrient solution in different salinity levels: 2 (control), 4, 6 and 8 dsm-1 for 14 days when the palnt was one month. Results & Discussion: Our results revealed that ginger has a moderately salt tolerance, because only 6 and 8 dsm-1 caused reduction in chlorophyll a, b and chlorophyll content and a/b ratio and consequently growth and dry mater accumulation. In spite of negative effect of salinity on ginger vegetative growth, antioxidant and defensive enzymes activity such as catalase, PAL and TAL was increased at 4 dsm-1 as compared with control but these enzymes activity was decrease at 6 and 8 dsm-1.


Article Title [Persian]

اثر تنش شوری بر رشد رویشی و فعالیت آنزیم¬های آنتی اکسیدانی و دفاعی در گیاه زنجبیل (Zingiber officinale Roscoe)

Authors [Persian]

  • ایمانه دهقانی 1
  • اکبر مستاجران 2
1 دانش آموخته کارشناسی ارشد، دانشکده ی علوم، گروه زیست شناسی، دانشگاه اصفهان
2 استاد دانشکده¬ی علوم، گروه زیست شناسی، دانشگاه اصفهان
Abstract [Persian]

مقدمه و هدف: گیاه زنجبیل با نام علمیZingiber officinale Roscoe.  متعلق به خانواده زنجبیل(Zingiberaceae) می‌باشد که علاوه بر ارزش غذایی در صنایع داروسازی نیز کاربرد وسیعی دارد. به دلیل قرارگیری کشور ایران در مناطق شور، شوری یکی از مشکلات اساسی در کشت گونه­های گیاهی بومی و نیز غیربومی نظیر زنجبیل می باشد و از آن جا که تنش شوری سبب فعال شدن سیستم  آنتی اکسیدانی و دفاعی در  گیاهان می­باشد. لذا در پژوهش حاضر اثر سطوح مختلف تنش شوری بر روی خاصیت آنتی اکسیدانتی گیاه زنجبیل مورد بررسی قرار گرفت. روش تحقیق: این تحقیق در یک طرح بلوک‌های تصادفی در سه تکرار انجام شد که تیمار شوری در 4 سطح با استفاده از کلرور سدیم در محلول غذایی هوگلند در سطوح شوری 2 (شاهد)، 4، 6 و 8  دسی زیمنس بر متر در یک دوره 14 روزه برروی گیاهان یک‌ماهه اعمال گردید. نتایج و بحث: نتایج این مطالعه نشان داد که گیاه زنجبیل دارای تحمل متوسط نسبت به نمک NaCl  بوده و افزایش شوری سبب کاهش غلظت کلروفیل a، b، نسبت کلروفیل a/b و کلروفیل کل شده و در نتیجه کاهش رشد و تجمع ماده خشک را به دنبال داشت. علی­رغم اثر مضر شوری بر رشد رویشی زنجبیل شوری 4 dsm-1 سبب افزایش فعالیت آنزیمهای آنتی اکسیدانی نظیر کاتالاز و دفاعی نظیر (Phenylalanine) Ammonia Lyase PAL و TAL (Tyrosine Ammonia Lyase) نسبت به شاهد گردید ولی شوری های 6 و 8 dsm-1 سبب کاهش فعالیت این آنزیم­ها شد. توصیه کاربردی/ صنعتی: با توجه به نتایج تحقیق به نظر می­رسد که با کشت گیاه در شوری­های 2 و 4 dsm-1 بتوان از خواص آنتی اکسیدانی و دفاعی آن در صنایع غذایی، داروسازی و عطر سازی بیشتر بهره جست. احتمالاً کشت این گیاه جهت بهره­برداری از ریزوم در شرایط کنترل شده گل­خانه­ای و فراهم نمودن شرایط فیزیولوژیکی مناسب  نیز امکان پذیر می باشد.

Keywords [Persian]

  • تنش شوری زنجبیل رشد رویشی آنزیم های آنتی اکسیدان

زرگری, ع. 1370. گیاهان دارویی. موسسه انتشارات و چاپ دانشگاه تهران. صفحات: 552-556.

صمصام‌شریعت, ه. 1374. پرورش و تکثیر گیاهان دارویی. نشر مانی, اصفهان. صفحات: 274-275.

قاسمی‌دهکردی، ن. 1381. فارماکوپه گیاهی ایران. وزارت بهداشت- درمان و آموزش پزشکی، معاونت غذا و دارو، 387-394.

Acar, O., Turkan, I. & Ozdemir, F. 2001. Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgar L.) cultivars. Acta Physiologia Plantarum, 23: 351-356.

Ahmed, A. M., Heikal, M. M. & Shaddad, M. A. 1978. Photosynthetic activity, pigment content and growth of Helianthus annus and Linum usitatissimum plants as influenced by salinization treatments. Bulletin of the Forest Science of Assiut University, 7: 49-56.

Alscher, R. G., Erturk, N. & Health, L. S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53: 1331-1341.

Al-Sobhi, O. A., Al-Zahrani, H. S. & Al-Ahmadi, S. B. 2006. Effect of salinity on chlorophyll and carbohydrate contents of Calotropis Procera seedlings. Scientific Journal of Faisal University (Basic and Applied Sciences), 7: 105-115.

Al-Yassin, A. 2004. Influence of salinity on citrus: a review paper. Journal of Central European Agriculture, 5: 263- 272.

Arnon, D. I. 1949. Copper enzyme in isolated chloroplasts, 1, Polyphenoloxidase in Beta vulgaris. Plant Physiology , 24: 1-15.

Asada, K. & Takahashi, M. 1987. Production and scavenging of active oxygen in photosynthesis. In: D.J. Kyde, C.J. Osmond and C. Arntun (Editors), Photo-inhibition. Elsevier, Amsterdam, PP. 227-287.

Ashraf, M. Y. & Bhatti, A. S. 2000. Effect of salinity on growth and chlorophyll content of rice. Pakistan Journal of Sciences Indian Research, 43: 130-131.

Barret-Lennard, E. G., 2003. The interaction between waterlogging and salinity higher plants:Causes, consequences and implications. Plant Soil, 253: 35 - 54.

Beaudoin-Egan, L. D. & Thorpe, T. A., 1985. Tyrosine and phenylalanine ammonialyase activities during shoot inhibition in tobacco callus cultures. Plant Physiology, 78: 438-441.

Bone, M. E. 1990. Root a new antiemetic. The effect of ginger root on postoperative nausea and vomiting after major gynecological surgery. Anasestheia, 45: 669-671.

Borsani, O., Valpuesta, V. & Botella, M. A. 2003. Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell, Tissue and  Organ Culture, 73: 101-115.

Cacmak, I., Strbac, D. & Marschner, H. 1993. Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seed. Journal of Experimental Botany, 44: 127-132.

Chaparzadeh, N., Amico, M. L., Nejad, R. K., Izzo, R. & Izzo, F. N. 2004. Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiology and Biochemistry, 42: 695-701.

Choukr-Allah, R. 1996. The potential of halophytes in the development and rehabilitation of arid and semi-arid zones. In: R. Choukr-Allah, C.V. Malcolm and A. Hamdy (Editors), Halophytes and Biosaline Agriculture. Marcel Dekker, New York, USA, PP. 3-13.

Ciçek, N. & Cakirlar, H. 2002. The effect of salinity on some physiological parameters in two maize cultivars. Plant Physiology, 28: 66-74.

Dasgan, H.Y., Aktas, H., Abak, K. & Cakmak, I. 2002. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Science, 163: 695-703.

Demiral, M. A., Aydin, M. & Yorulmaz, A., 2005. Effect of salinity on growth chemical composition and antioxidative enzyme activity of two Malting Barley (Hordeum vulgare L.) cultivars. Turkish Journal of Botany, 29: 117-123.

Dhindsa, R. A., Plumb-Dhindsa, P. & Thorpe, T. A. 1981. Leaf senescence: correlated with increased permeability and lipid proxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 126: 93-101.

Engel, N., Schmidt, M., Lutz, C. & Feierabend, J. 2006. Molecular identification, heterologous expression and properties of light-insensitive plant catalases. Plant, Cell and Environment, 29: 593-607.

El-Shintinway, F. 2000. Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica, 38: 615-620.

Foyer, C. H. & Halliwell, B. 1976. The presence of glutathion and glutathion reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133: 21-25.

Hajar, A.S., Heikal, M.M., Maghrabi, Y.M. & Abuzinadah, R.A. 1993. Responses of Arachis ahypogaea (Peanut) to salinity stress. Journal of King University Science, 5: 5-13.

Halliwell, B. 1987. Oxidative damage, lipid peroxidation, and antioxidant protection in chloroplasts. Chemistry and Physics of Lipids, 44: 327-340.

Hasegawa, P. M., Bressan, R. A., Zhu, J. K. & Bohnert, H. J. 2000. Plant cellular and molecular response to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51: 463-499.



Hernandez, J. A. Corpas, F. J., Gomez, M., Rio, L. A. D. & Sevilla, F. 1993. Salt induced oxidative stress mediated by activated oxygen species in pea leaf mitochondrai. Physiologia Plantarum, 89: 103-110.

Hernandez, J. A. Ferrer, M. A., Jimenez, A., Barcelo, A. R. & Sevilla, F. 2000. Antioxidant systems snd O-2/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesion in minor veins. Plant Physiology, 127: 817-831.

Hill, A.F. 1952. Economic botany McGraw-Hill Book Company, New York. PP. 439- 501.

Hoagland, R. E. & Duke, S. O. 1981. Effect of herbicides on extractable phenylalanine ammonia lyase activity in light and dark- grown soybean (Glycine max L.) seedlings. Weed science, 29: 433.

Hsu, S. Y. & Kao, C. H. 2003. Differential effect of sorbitol and polyethylene glycol on antioxidant enzymes in rice leaves. Plant Growth Regulator, 39: 83-90.

Kawasaki, S., Borchert, C. & Deyholos, M. 2001. Gene expression profiles during the initial phase of salt stress in rice. Plant cell, 13: 889-905.

Khadri, M., Tejera, N. A. and Lluch, C. 2007. Sodium chloride-ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. Environmental and Experimental Botany, 60: 211-218.

Lutts, S., Kinet, J. M. & Bouharmont, J. 1996. Effects of various salts and mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) callus cultures. Journal of Plant Physiology, 149: 186-195.

McCord, G. M. 2000. The evolution of free radicals and oxidative stress. American Journal of Medicine, 108: 652-659.

Mer, R. K., Prajith, P. K. & Pandya, D. H. 2000. Effects of salt on germination of seeds and growth of young plants of Hordeum vulgare, Triticum aestivum, Cicer aestivum and Brassica juncea. Journal of Agronomy & Crop Science, 185: 209-217.

Munns, R., Hare, R. A., James, R. A. & Rebetzke, G. J. 2000 Genetic variation for improving the salt resistance of durum wheat. Austrialian Journal of Agriculture Research, 51: 69-74.

Nemat Alla, M. M. 2000. The influence of naphthalic anhydride and l-aminobenzotriazole on maize resistance to herbicides, secondary metabolism responses. Egyptian Journal of Physiological Science, 23 : 399-43.

Nemat Alla, M. M. & Younis, M. E. 1995. Herbicide effects on phenolic metabolism in maize (Zea mays L.) and soybean (Glycine max L.) seedlings. Journal of Experimantal Botany, 46: 1731-1736.

Nemat Alla, M. M., Younis, M. E., El-Shihaby, O. A. & El-Bastawisy, Z. M. 2002. Kinetin regulation of growth and secondary metabolism in waterlogging and salinity treated Vigna sinensis and Zea mays. Acta Physiologia Plantarum, 24: 19-27.

Netondo, G. W., Onyango, J. C. & Beck, E. 2004. Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Science, 44: 797-805.

Okuma, E., Murakami, Y., Shimoishi, Y., Tada, M. & Murata, Y. 2004. Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Science and Plant Nutrition, 50: 1301-1305.

Phang, J. M. 1985.The regulatory functions of proline and pyrroline-5-carboxylicacid. Current Topics in Cellular Regulation, 25: 91-132.

Reddy, M. P.& Vora, A. B. 1986. Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica, 20: 50-55.

Redman, R. E. 1999. Osmotic and specific ion effects on the germination of alfalfa. Canadian Journal of Botany, 52: 803-808.

Salin, M. L. 1991. Chloroplast and mitochondrial mechanism for protection against oxygen toxicity. Free Radical Research Communications, 12: 851-858.

Saqib, M., Akhtar, J. & Qureshi, R. H. 2005. Na+ exclusion and salt resistance of wheat (Triricum aestivum) in saline-waterlogged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma. Plant Science, 169: 125-130.

Scandalios, J. G., 1993. Oxygen stress and superoxide dismutase. Plant Physiology, 101: 7-12.

Schell, R. D. & Parker, J. E. 1990. Elicitor recognition and signal transduction in plant gene activation. Zeitschrift fur Naturforsch, 450: 569-575.

Shetty, K. 1997. Biotechnology to harness the benefits of dietary phenolics, focus on Lamiaceae. Asia Pacific Journale of Clinical Nutrition, 6: 162-171.

Shimizu, N. & Kobayashi, K. 1984. The reaction of superoxide radical with catalase. Mechanism of the inhibition of catalase by superoxide radical. Journal of Biological Chemistry, 259: 4414-4418.

Tejera Garcia, N. A., Iribarne, C., Palma, F. & Lluch, C. 2007. Inhibition of the catalase activity from Phaseolus vulgaris and Medicago sativa by sodium chloride. Plant Physiology and Biochemistry, 45: 535-541.

Tejera, N. A., Soussi, M. & Lluch, C. 2006. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environmental and Experimental Botany, 58: 17-24.

Willekens, H., Inze, D., Montagu, M. V. & Camp, W. V. 1995. Catalases in plants. Molecular Breeding, 1: 207-228.