Study of un-saturated fatty acids content in Ocimum basilicum L.

Document Type : Original article


Professor, Islamic Azad University, Branch Parand, Tehran, Iran.


Background & Aim: Ocimum basilicum L. is belong to the Lamiaceae family which is cultivated as a culinary, industrial and medicinal plants in some countries from thousands years ago. The seed of this plant is rich in poly un-saturated fatty acids (PUFA) and produced a large amount of mucilage.
Experimental: The oil of seed was extracted separately and converted to fatty acids methyl esters, and composition of fatty acids in seed oil was determined by Gas Chromatography.
Results & Discussion: The results show that the highest content of total fat between (A.W.L.P.), (28.98 % of dw) in Ardabil (L.P.) and lowest (17.25 % of dw) in A.G.2 (W.P.). The highest Palmitic acid content is between (A.W.L.P.), (34.81 mol %) in Kermanshah (L.P.) and lowest (2.05 mol %) is in Kerman (L.P.). The highest Stearic acid content is between (A.W.L.P.), (7.56 mol %) in Ahwaz (L.P.) and lowest (1.42 mol %) in Ardabil (W.P.). The highest of Oleic acid between (A.W.L.P.), (22.81 mol %) in Ghom (L.P.) and lowest (11.10 mol %) in A.G.2 (W.P.). The highest Linoleic acid content between (A.W.L.P.), (25.60 mol %) in A.G.1 (L.P.) and lowest (15.55 mol %) in Kermanshah (L.P.). The highest amount of Linolenic acid between (A.W.L.P.), (53.89 mol %) in A.G.1 (W.P.) and lowest (28.08 mol %) in Kermanshah (L.P.). The results also definite clearly that the seed of O. basilicum populations have large amount of un-saturated fatty acids, mucilage and they have a few amount of saturated fatty acids.


Article Title [فارسی]

بررسی اسیدهای چرب غیر اشباع در دانه ریحان (Ocimum basilicum L)

Author [فارسی]

  • غلام رضا بخشی خانیکی
استاد گروه زیست شناسی دانشگاه آزاد اسلامی واحد پرند
Abstract [فارسی]

مقدمه و هدف: دانه‌های ریحان ( (Ocimum basilicum L.منبعی غنی از اسید‌های چرب غیراشباع بوده و مقدار زیادی موسیلاژ  نیز تولید می‌کنند. این مطالعه به منظور مقایسه میزان و نوع  اسیدهای چرب غیراشباع موجود در ریحان متعلق به ده جمعیت مختلف به مرحله‌ی اجرا درآمد.
روش تحقیق: بذرهای جمع‌آوری شده از این گیاه در شرایط گل­خانه در سه تکرار کشت شدند و در نهایت روغن بذرهای جمع آوری شده و بذرهای به دست آمده از گیاهان کشت شده به طور جداگانه استخراج و تبدیل به متیل استر گردیدند، سپس ترکیب­های اسید چرب روغن بذرها توسط کروماتوگرافی گازی تعیین شدند.
 نتایج و بحث: نتایج نشان داد که بالاترین میزان روغن کل در بین تمام جمعیت‌های محلی و آزمایشگاهی در جمعیت آزمایشگاهی اردبیل (98/28 درصد وزنی) و کمترین میزان آن (25/17 درصد وزنی) در جمعیت محلی آذربایجان غربی 2 مشاهده گردید. هم‌چنین بالاترین میزان اسید پالمتیک (81/34 مول درصد) در جمعیت آزمایشگاهی کرمانشاه و کمترین میزان آن (05/2 مول درصد) در جمعیت آزمایشگاهی کرمان مشاهده شد. از طرفی بالاترین مقدار اسید استئاریک (56/7 مول درصد) در جمعیت آزمایشگاهی اهواز و کمترین آن (42/1 مول درصد) در جمعیت وحشی اردبیل مشاهده شد و بالاترین میزان اسید اولئیک (81/22 مول درصد) در جمعیت آزمایشگاهی قم و کمترین آن (10/11 مول درصد) در جمعیت محلی  آذربایجان غربی 2 مشاهده گردید. بالاترین میزان اسید لینولئیک (60/25 مول در صد) در جمعیت آزمایشگاهی آذربایجان غربی 1 و کمترین آن (55/15 مول درصد) در جمعیت آزمایشگاهی کرمانشاه مشاهده شد. بالاترین میزان اسید لینولنیک (89/53 مول درصد) در جمعیت محلی آذربایجان غربی1 و کمترین آن 08/28 مول درصد در جمعیت آزمایشگاهی کرمانشاه مشاهده شد. به طورکلی چنین به نظر می‌رسد که بذر جمعیت‌های مختلف ریحان دارای مقدار زیادی از اسیدهای چرب غیر اشباع و مقدار کمی از اسید‌های چرب اشباع هستند.
توصیه کاربردی/ صنعتی: بذر جمعیت‌های محلی ریحان متعلق به نواحی شمالی‌تر ایران با آب و هوای معتدل دارای مقادیر بیشتری اسیدهای چرب غیراشباع بلند زنجیر مانند اسید اولئیک و اسید لینولئیک می­باشد که این اسیدهای چرب دارای کاربرد‌های دارویی، صنعتی، بهداشتی و آرایشی فراوانی هستند. بنابراین انتخاب جمعیت‌های محلی شمال کشور با هدف تولید اسید چرب غیراشباع توصیه می‌شود.

Keywords [فارسی]

  • اسیدهای چرب بذر روغن Ocimum basilicum L
Agnihotr, A. & Kaushik, N. 1999.Transfer of double low characteristics in early maturing Brassica napus L. Journal of Oil Seed Research, 16 (2): 227 – 229.
Bentham, G. 1848. Labiatae in prodomus systematic naturalis regni vegetabilis pars XII, Treuttel and wurtz , Paris , PP: 24 - 608.
Charles, D. J. & Simon, J. E. 1990. Comparison of extraction methods for the rapid determination of essential oil content and composition of basil. Journal Horticulture Science, 115(3): 458 - 462.
Chavan, S. R. & Nikam, S. T. 1982. Mosquito larvicidal activity of Ocimum basilicum Linn. Journal of Medical Research, 75: 220 - 222.
Chogo, J. B. & Crank, G. 1981. Chemical Composition and Biological activity of the Tanzanian plant Ocimum suare L. Journal of Nature of Production, 44(3): 308 - 311.
Downey, R. K. 1990. A quality brassica oil seed In: Janick J. and Simon J. E. (Eds), Advances in new crops, Timber Press, Portland OR., P: 340.
Fleischer, A. 1981. Essential oils from two varieties of Ocimum basilicum L. grown in Israel. Journal of Science Food Agriculture, 32: 1119 - 1122.
Fulton, P.  2001. Medicinal culinary and aromatic crops. Available on http://www.agric.gor. Ab.Ca / Crops/Special / basil.HTML.
Grayer, R. J., Kite, G. C., Goldstone, F. G., Bryan, S. E., Paton, A. & Putievsky, E. 1996. Intra specific taxonomy and essential oil chemotypes in sweet basil, Ocimum basilicum. Phytochemistry, 43: 1033 - 1039.
Hasegawa, Y., Tajima, K., Toi, N. & Sugimura, Y. 1997. Characteristic component found in essential oil of Ocimum basilicum L. Flavour and Fragrance Journal, 12: 195 - 200.
Herbert, R. B. 1989. Shikmic acid pathway in the secondary metabolites Chapman and Hall, New York, PP: 96 - 110.
Loliger, J. 1991. The use of antioxidants in Food, In O. I. Aruoma, B. Hall: Well (Eds.) Free radicals and Food additives, London: Taylor and Francis, PP: 129 - 150.
Marotti, M., Piccaglia, R. & Giovanell, E. 1996. Difference in essential oil composition of basil (Ocimum basilicum L.), Italian cultivars related to morphological characteristics. Journal Agriculture Food Chemistry, 44: 3926 - 3929.
Ntezurubanza, L., Scheffer, J. J. C., Looman, A. & Baerhiem, A. 1984. Composition of essential oil of Ocimum kiliman grown in Rowanda. Planta Medica, 13: 385 - 388.
Osawa, T. 1994.  Novel natural antioxidants for utilization in food and biological systems. In I. Uritani , V. V. Garcia , & E. M. Mendosa ( Eds. ) , Postharvest biochemistry of plant food - materials in the tropics, Tokyo , Japan : Japan Scientific Societies Press, PP: 241 - 251.
Simon, J. E., Quinn, J. & Murray, R. G. 1990. A source of essential oils, In: J. Janick and J. E. Simon (eds.), Advance in new crops, Timber Press, Portland, OR., PP: 484 - 489.
Simon, J. E., Morales, M. R., Phippen, W. B., Viera, R. F. & Hao, Z. 1999. A source of aroma compounds and a popular culinary and ornamental herb, In J. Janick (Ed.), Perspectives on new crops and new use, Alexandria, VA: ASHS Press.
Velioglu, Y. S., Massa, G., Gao, L., &  Oomah, B. D. 1998. Antioxidant activity and total phenolic in selected fruits, vegetable and grain products. Journal of Agricultural Food & Chemistry, 46: 4113 - 4117.
Vieira, R. F. 1999. Genetic diversity and inheritance of volatile oil constituents in basil (Ocimum spp.), Ph.D. Thesis, Purdue University, West Lafayette I. N., USA.
Zgorka, G. & Glowniak, K. 2001. Variation of free phenolic acid in medicinal plants belonging to the lamiaceae family. Journal of Pharmaceutical and Biomedical Analysis, 26: 79 - 87.