A review on application of plant essential oils in food packaging films

Document Type: Review article


1 Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran

2 Department of Food Science and Technology, College of Agriculture, Tarbiat Modares University, Tehran, Iran

3 Department of Food Science and Technology, Science and Research Branch of Tehran, Islamic Azad University, Tehran, Iran


Introduction: Active packaging is one of the innovations in food packaging industry that would be a respons to the changing needs of consumers and markets. In this technique, materials such as adsorbents oxygen, moisture, carbon dioxide, ethylene and carbon dioxide-releasing flavor compounds, antimicrobials, antioxidants and various aromatic compounds are used. In the last decade, great attention are paid to application of antimicrobial compounds for food packaging and food contact surfaces, the plant essential oils are one of the active constituents in this area. In this article, different kinds of plant essential oils, constituents, antimicrobial properties, mutagenicity and anti-mutation effect of these compounds and their use in food packaging and its impact on the physicochemical properties of packaging and food packaging are discussed.
Results: Plant essential oils and its compounds such as linalool, thymol, cinnamaldehyde, vanillin, carvacrol, and many other compounds because of their characteristics such as anti-microbial, anti-fungal and anti-oxidant activity are acceptable for using in the food industry and increasing shelf life of corruptible materials. Nowadays, many studies have shown that most of these substances are not harmful to human health; therefore, has found considerable acceptability in industry and among consumers.
Conclusion: Antimicrobial packaging is a type of active packaging that is effective on shelf life, health and food safety. Various materials such as plant essential oils are used in this type of packaging which increase the shelf life and product quality. However, the safety of these compounds before using in industry must be determined.


Article Title [Persian]

مروری بر کاربرد اسانس های گیاهی در فیلم های بسته بندی مواد غذایی

Authors [Persian]

  • الهه امانی 1
  • امیرپویا قندهاری یزدی 2
  • لیلا صداقت بروجنی 3
1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، شیراز، ایران
2 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس تهران، تهران، ایران
3 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد شهرکرد، شهرکرد، ایران
Abstract [Persian]

مقدمه   و هدف: بسته بندی فعال یکی از نوآوری­های   صنعت بسته بندی مواد غذایی بوده که پاسخی برای نیاز­های متغیر مصرف کنندگان و   بازار می­باشد. در این تکنیک از موادی مانند جاذب اکسیژن، رطوبت، دی کسید کربن،   اتیلن و ترکیبات طعم دهنده و ترکیبات آزاد کننده دی اکسید کربن، آنتی میکروبی،   آنتی اکسیدانی و ترکیبات معطر استفاده می شود. در دهه اخیر توجه زیادی به کاربرد   ترکیبات ضد میکروبی برای بسته بندی مواد غذایی و سطوح در تماس با مواد غذایی شده   است، اسانس­های گیاهی یکی از ترکیبات موثر دراین زمینه می­باشند. در این مقاله   به بررسی انواع اسانس­های گیاهی، اجزاء اصلی، خصوصیات ضد میکروبی، اثر جهش زایی   و ضد جهش این ترکیبات، کاربردشان در بسته بندی مواد غذایی و تاثیر آن­ها بر   خصوصیات فیزیکوشیمیایی ماده بسته بندی و ماده غذایی بسته بندی پرداخته شده است. نتایج   و بحث: اسانس­ها و ترکیبات آن ها مانند   لینالول، تیمول، سینامالدئید، وانیلین، کارواکرول و بسیاری از ترکیبات دیگر برای   استفاده در صنعت غذا و افزایش عمر نگهداری مواد فساد پذیر به دلیل خواصی مانند   فعالیت ضد میکروبی، ضد قارچی و آنتی اکسیدانی قابل قبول می­باشند. در حال حاضر تحقیقات   زیادی نشان داده اند که اکثر این ترکیبات برای سلامت انسان مضر نمی باشند، مقبولیت  قابل توجهی در صنعت و بین مصرف کنندگان پیدا کرده­اند.   توصیه کاربردی/ صنعتی: بسته بندی ضد میکروبی یک نوع بسته بندی فعال است که بر زمان نگهداری، سلامت و ایمنی غذا موثر می­باشد. مواد مختلفی از جمله اسانس­های گیاهی در این نوع بسته بندی قابل استفاده هستند که باعث افزایش عمر نگهداری و کیفیت محصول می­شوند، با این­حال ایمنی این ترکیبات قبل از استفاده در صنعت باید مشخص شده باشد.

Keywords [Persian]

  • اسانس
  • آنتی اکسیدانی
  • بسته بندی فعال
  • جهش زایی
  • ضد میکروبی

Abdollahi, M., Rezaei, M. & Farzi, G. A. (2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering, 111, 343-350.

Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M. A. & Martín-Belloso, O. (2015). Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. FoodHydrocolloids, 47, 168–177.

Amorati, R., Foti, M. C. & Valgimigli, L. (2013). Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry, 61, 10835−10847.

An, D. S., Kim, Y. M., Lee, S. B., Paik, H. D. & Lee, D. S. (2000). Antimicrobial low Ground Beef Following Treatments with Nisin in Calcium Alginate Gels. Food Microbiology, 14, 425–430.

Appendini, M. S. & Hotchkiss, H. J. (2006). Development of immobilized Iysozyme based active film. Journal of Food Engineering, In press paper.

Bahram, S., Rezaei, M., Soltani, M., Kamali, A., Ojagh, S.M. & Abdollahi, M. (2012). Whey protein concentrate edible film activated with cinnamon essential oil. Journal of Food Processing and Technology, 38, 1251-1258.

Bakkali, F., Averbeck, S., Averbeck, D. & Idaomar, M., 2008. Biological effects of essential oils – a review. Food and Chemical Toxicology, 46, 446–475.

Bajpai, V. K., Baek, K. H. & Kang, S. C. (2012). Control of Salmonella in foods by using essential oils: A review. Food Research International, 45, 722-734.

Bakri, I. M. & Douglas, C. W .I. (2005). Inhibitory effects of garlic extract on oral bacteria. Archives of Oral Biology, 50, 645-651.

Buchbauer, G. (2010). Biological activities of essential oils. In: Bas¸ er, K.H.C., Buchbauer, G. (Eds.), Handbook of Essential Oils: Science, Technology, and Applications. CRC Press/Taylor and Francis Group, Boca Raton, pp. 235–280.

Beric, T., Nikolic, B., Stanojevic, J., Vukovic-Gacic, B. & Knezevic-Vukcevic, J. (2008). Protective effect of basil (Ocimum basilicum L.) against oxidative DNA damage and mutagenesis. Food and Chemical Toxicology, 46, 724-732.

Bhatt, P. R., Pandya, K. B. & Sheth, N. R. (2010). Camellia sinensis (L): the medical beverage: a review. International Journal of Pharmaceutical Sciences Review. Res, 3, 6-9.

Bostancioglu, R. B., Kürkcüoglu, M., Can Baser, K. H. & Koparal, A. T. (2012). Assessment of anti-aniogenic and anti-tumoral potentials of Origanum onites L. essential oil. Food and Chemical Toxicology, 50, 2002-2008.

Colina-Coca, C., González-Peña, D., Vega, E., de Ancos, B. & Sánchez-Moreno, C. (2013). Novel approach for the determination of volatile compounds in processed onion by head space gas chromatography–mass spectrometry (HSGC–MS). Talanta, 13, 137-144.

Delaquis, P.J., Stanich, K., Girard, B. & Mazza, G. (2002). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. International Journal of Food Microbiology, 74, 101–109.

De Martino, L., De Feo, V. and Nazzaro, F. 2009. Chemical composition and in vitro antimicrobial and mutagenic activities of seven Lamiaceae essential oils. Molecules, 14, 4213-4230.

Emiroğlu, Z. K., Yemiş, G. P.,  Coşkun, B. K. & Candoğan, K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 86, 283–288.

Evandri, M. G., Battinelli, L., Daniele, C., Mastrangelo, S., Bolle, P., Mazzanti, G. 2005. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial 873 reverse mutation assay. Food and Chemical Toxicology, 43, 1381-1387.

Franz, C. & Novak, J. (2010). Sources of essential oils. In: Bas¸ er, K. H. C., Buchbauer, G. (Eds.), Handbook of Essential Oils: Science, Technology, and Applications. CRC Press/Taylor and Francis Group, Boca Raton, pp. 39–82.

Gómez-Estaca, J., Giménez, B., Montero, P. & Gómez-Guillén, M.C. (2009a). Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. Journal of Food Engineering, 92, 78–85.

Gómez-Estaca, J., Montero, P., Fernández-Martín, F., Alemán, A. & Gómez-Guillén, M. C. (2009b). Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocolloids, 23, 1334–1341.

Gómez-Estaca, J., López de Lacey, A., López-Caballero, M.E., Gómez-Guillén, M.C. & Montero, P. (2010). Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27, 889–896.

Guan, W., Li, S., Yan, R., Tang, S. & Quan, C. (2007). Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chemistry, 101, 1558-1564.

Gupta, J., Siddique, Y. H., Beg, T., Ara, G. & Afzal, M. (2009). Protective role of green tea extract against genotoxic damage induced by anabolic steroids in cultured human lymphocytes. Experimental Biology and Medicine, 1, 87-99.

Han, J. H. (2000). Antimicrobial Food Packaging. Food Technology, 54(3), 56–65.

Han, C., Wang, J., Li, Y., Lu, F. and Cui, Y. (2014). Antimicrobial-coated polypropylene films with polyvinyl alcohol in packaging of fresh beef. Meat Science, 96, 901–907.

Hamedo, H. and Abdelmigid, H. M. (2009). Use of antimicrobial and genotoxicity potentially for evaluation of essentials oils as food preservative. The Open Biotechnology Journal, 3, 50-56.

Hersch-Martinez, P., Lea˜nos-Miranda, B. E. and Solorzano-Santos, F. (2005). Antibacterial effects of commercial essential oils over locally prevalent pathogenic strains in Mexico. Fitoterapia, 76, 453–457.

Holley, R. A. & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22, 273–292.

Hyldgaard, M., Mygind, T. & Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interaction with food matrix components. Frontiers in Microbiology, 3, 12.

Hyun, J. E., Bae, Y. M., Yoon, J. H. and Lee, S. Y. (2015). Preservative effectiveness of essential oils in vapor phase combined with modified atmosphere packaging against spoilage bacteria on fresh cabbage. Food Control, 51: 307–313.

Ibrahim, N. A., El-Sakhawy, F. S., Mohammed, M. M. D., Farid, M. A., Abdel- Wahed, N. A. M. and Deabes, D. A. H. (2015). Chemical composition, antimicrobial and antifungal activities of essential oils of the leaves of Aegle marmelos (L.) Correa growing in Egypt. Journal of Applied Pharmaceutical Science, 5 (2), 1-5.

Ipek, E., Zeytinoglu, H., Okay, S., Tuylu, B. A., Kurkcuoglu, M. & Can Baser, K. H. (2005). Genototoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chemistry, 93, 551-556.

Jordan, M. J., Martinez, R. M., Goodner, K. L., Baldwin, E. A. and Sotomayor, J. A. (2006). Seasonal variation of Thymus hyemalis Lange and Spanish Thymus vulgaris L. essential oils composition. Industrial Crops and Products, 24, 253–263.

Jeena, K., Liju, V.B., Viswanathan, R. and Kuttan, R. (2014). Antimutagenic potential and modulation of carcinogen-metabolizing enzymes by ginger essential oil. Phytotherapy Research, 28, 849-855.

Kirkpinar, F., Bora Unlu, H. and Ozdemir, G. (2011). Effects of oregano and garlic essential oils on performance, carcase, organ and blood characteristics and intestinal microflora of broilers. Livestock Science - Journal, 137, 219-225.

Lei, J., Yang, L., Zhan, Y., Wang, Y., Ye, T., Yan Li, Hongbing Deng, Bin Li. M.C. Cruz-Romero, T. Murphy, M. Morris, E. Cummins, J.P. Kerry. (2013). Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control. 34: 393–397.

Liju, V. B., Jeena, K. & Kuttan, R. (2013). Acute and subchronic toxicity as well as mutagenic evaluation of essential oil from turmeric (Curcuma longa L.). Food and Chemical Toxicology, 53, 52-61.

Martinez-Rocha, A., Puga, R., Hernández-Sandoval, L., Loarca-Piña, G. & Mendoza, S. (2008). Antioxidant and antimutagenic activities of Mexican oregano (Lippia graveolens Kunth). Plant Foods for Human Nutrition, 63, 1-5.

Manso, S., Cacho-Nerin, F., Becerril, R. & Nerín, C. (2013). Combined analytical and microbiological tools to study the effect onAspergillus flavus of cinnamon essential oil contained in food packaging. Food Control, 30, 370–378.

Mejri, J., Abderrabba, M. & Mejri, M. (2010). Chemical composition of the essential oilof Ruta chalepensis L: influence of drying, hydro-distillation duration and plant parts. Industrial Crops and Products, 32, 671–673.

Mezzoug, N., Elhadri, A., Dallouh, A., Amkiss, S., Skali, N.S., Abrini, J., Zhiri, A., Baudoux, D., Diallo, B., El Jaziri, M. & Idaomar, M. (2007). Investigation of the mutagenic and antimutagenic effects of Origanum compactum essential oil and some of its constituents. Mutation Research, 629, 100–110.

Moradi, M., Tajik, H., Razavi Rohani, S. M., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J. & Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. Food Science and Technology, 46, 477–484.

Muriel-Galet, V., Cran, M. J., Bigger, S. W., Hernández-Muñoz, P. & Gavara, R. (2015). Antioxidant and antimicrobial properties of ethylene vinyl alcohol copolymer films based on the release of oregano essential oil and green tea extract components. Journal of Food Engineering, 149, 9–16.

Neffati, A., Skandrani, I., Ben Sghaier, M., Bouhlel, I., Kilani, S., Ghedira, K., Neffati, M., Chraief, I., Hammami, M. & Chekir-Ghedira, L. (2008). Chemical composition, mutagenic and antimutagenic activities of essential oils from (tunisian) Artemisia campestris and Artemisia herba-alba. Journal of Essential Oil Research, 20, 471-477.

Neffati, A., Limem, I., Kilani, S., Bouhlel, I., Skandrani, I., Bhouri, W., Sghaier, M.B., Boubaker, J. Ledauphin, J., Barillier, D., Ghedira, L. C. & Ghedira, K. (2009). A comparative evaluation of mutagenic, antimutagenic radical scavenging and antibacterial activities of essential oils of Pituranthos chloranthus (Coss. Et Dur.). Drug and Chemical Toxicology, 32, 372-380.

Ojagh, S. M., Rezaei, M., Razavi, S. H. & Hosseini, S. M. H. (2010a). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry. 122, 161–166.

Ojagh, S. M., Rezaei, M., Razavi, S. H. and Hosseini, S. M. H. (2010b). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120, 193–198.

Osés, J., Fabregat-Vázquez, M., Pedroza-Islas, R., Tomás, S. A., Cruz-Orea, A. & Maté, J. I. (2009). Development and characterization of composite edible films based on whey protein isolate and mesquite gum. Journal of Food Engineering, 92: 56–62.

Raybaudi-Massilia, R. M., Mosqueda-Melgar, J. & Martín-Belloso, O. (2008). Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. International Journal of Food Microbiology, 121: 313–327.

Reyes, M. R., Reyes-Esparza, J., Ángeles, O. T. and Rodríguez-Fragoso, L. (2010). Mutagenicity and safety evaluation of water extract of Coriander sativum leaves. Toxicology and Chemical Food Safety in the Journal of Food, 75, 1086 6-12.

Roby, M. H. H., Sarhana, M. A., Selima, K.A.H. and Khalela, K. I. (2013). Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products, 43, 827-831.

Rodríguez, A., Batlle, R. & Nerín, C. (2007). The use of natural essential oils as antimicrobial solutions in paper packaging. Part II. Progress in Organic Coatings, 60, 33–38.

Rojas-Graü, M. A., Avena-Bustillos, R. J., Olsen, C., Friedman, M., Henika, P. R.,  Martín-Belloso, O., Pan, Z. & McHugh, T. H. (2007b). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of Food Engineering. 81, 634–641.

Rojas-Graü, M. A., Raybaudi-Massilia, R. M., Soliva-Fortuny, R. C.,  Avena-Bustillos, R. J., McHugh, T. H. & Martín-Belloso, O. (2007b). Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biology and Technology, 45, 254-264.

Ruberto, G. & Baratta, M. T. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry, 69: 167–174.

Rubilar, J. F., Cruz, R. M.S., Silva, H. D., Vicente, A. A., Khmelinskii, I. & Vieira, M. C. (2013). Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. Journal of Food Engineering, 115, 466–474.

Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J.A. and Fernández-López, J. (2013). In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control. 30, 386–392.

Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M. & Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 91, 621-632.

Sanches-Silva, A., Costa, D., Albuquerque, T.G., Buonocore, T.G., Ramos, F., Castilho, M.C., Machado, A. V. & Costa, H. S. (2014). Trend in the use of natural antioxidants in active food packaging: a review. Food Additives and Contaminants: Part A, 31, 374-395.

Salvia-Trujillo, L., Rojas-Graü, A., Soliva-Fortuny, R. & Martín-Belloso, O. (2015). Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids, 43, 547–556.

Seydim, A. C. & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39, 639–644.

Severino, R., Ferrari, G.,  Vu, K. D., Donsì, F., Salmieri, S. & Lacroix, M. (2015). Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157:H7 and Salmonella Typhimurium on green beans, 50, 215–222.

Severino, R.,  Vu, K. D., Donsì, F., Salmieri, S.,  Ferrari, G. & Lacroix, M. (2014). Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. International Journal of Food Microbiology, 191, 82–88.

Sghaier N. B., Boubaker, J., Neffati, A., Limem, I., Skandrami, I., Bhouri, W., Bouhlel, I., Kilani, S., Chekir-Ghedira, L. & Ghedira, K. (2010). Antimutagenic and antioxidant potentials of Teucrium ramosissimum essential oil. Chemistry and Biodiversity, 7: 1754-1763.

Shoeibi, Sh., Rahimifard, N., Pirouz, B., Yalfani, R., Pakzad, S.R., Mirab Samiee, S. & Pirali Hamedani, M. (2009). Mutagenicity of four natural flavors: clove, cinnamon, thyme and Zataria multiflora Boiss. Journal of Medicinal Plants Research, 8, 89-96.

Shon, M. Y., Choi, S. D, Kahng, G. G., Nam, S. H. & Sung, N. J. (2004). Antimutagenic, antioxidant and free radical scavenging activity of ethylacetate extracts from white, yellow and red onions. Food Chemistry Toxicol, 42, 659-666.

Sinha, S., Jothiramajayam, M., Ghosh, M. & Mukherjee, A. (2014). Evaluation of toxicity of essential oils palmarosa, citronella, lemograss and vetiver in human lymphocytes. Food and Chemical Toxicology, 68, 71-77.

Siripatrawan, U. & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24, 770-775.

Souza, A. C., Benze, R., Ferrão, E. S., Ditchfield, C., Coelho, A. C. V. & Tadini, C. C. (2012). Cassava starch biodegradable films: influence of glycerol and clay nanoparticles contents on tensile and barrier properties and glass transition temperature. LWT- Food Science and Technology, 46, 110-117.

Souza, A. C., Ditchfield, C. & Tadini, C. C. (2010). Biodegradable films based on biopolymers for food industries. In M. L. Passos, and C. P. Ribeiro (Eds.), Innovation in food engineering: New techniques and products (pp. 511-537). Boca Raton, FL: CRC Press.

Souza, A. C., Goto, G. E. O., Mainardi, J. A., Coelho, A. C. V. & Tadini, C. C. (2013). Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. Food Science and Technology, 54, 346-352.

Stajkovic, O., Beric-Bjedov, T., Mitic-Culafic, D., Stankovic, S., Vukovic-Gacic, B., Simic, D. & Knezevic-Vukcevic, J. (2007). Antimutagenic Properties of basil (Ocimum basilicum L.) in Salmonella typhimurium TA100. Food Technology and Biotechnology, 45, 213–217.

Sung, S., Sin, L. T., Tee, T., Bee, S. & Rahmat, A. R. (2014a). Effects of Allium sativum essence oil as antimicrobial agent for food packaging plastic film. Innovative Food Science and Emerging Technologies, 26, 406–414.

Sung, S.,  Sin, L. T., Tee, T.,  Bee, S., Rahmat, A.R. &  Rahman, W. A. W. A. (2014b). Control of bacteria growth on ready-to-eat beef loaves by antimicrobial plastic packaging incorporated with garlic oil. Food Control, 39, 214–221.

Teixeira, B., Marques, A., Ramos, C., Batista, I., Serrano, C., Matos, O., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A. & Nunes, M. L. (2012). European pennyroyal (Mentha pulegium) from Portugal: chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil arbara. Industrial Crops and Products, 36, 81-87.

Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A. & Nunes, M. L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43: 587–595.

Tontul, I., Torun, M., Dincer, C., Sahin-Nadeem, H., Topuz, A., Turna, T. and Ozdemir, F. (2013). Comparative study on volatile compounds in Turkish green tea powder: Impact of tea clone, shading level and shooting period. Food Research International, 53, 744-750.

Unlu, M., Ergene, E., Unlu, G. V., Zeytinoglu, H. S. and Vural, N. (2010). Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food and Chemical Toxicology, 48, 3274–3280.

Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N. & Debevere, J. (1999). Developments in the active packaging of food. Trends in Food Science and Technology, 10: 77-86.

Viljoen, A. M., Subramoney, S., Vuuren, S. F. V., Bas¸ er, K. H. C. & Demirci, B. (2005). The composition, geographical variation and antimicrobial activity of Lippia javanica (Verbenaceae) leaf essential oils. Journal of Ethnopharmacology, 96, 271–277.

Yu, L., Dean, K. & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-02.

Zegura, B., Dobnik, D., Niderl, M. H. & Filipic, M. (2011). Antioxidant and antigenotoxic effects of rosemary (Rosmarinus officinalis L.) extracts in Salmonella typhimurium TA98 and HepG2 cells. Environ. Toxicol Pharmacol, 32, 296-305.

Zinoviadou, K. G., Koutsoumanis, P. K. & Biliaderis, C. G. 2009. Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. MeatScience, 82, 338–345.