Chemical composition and biological activities of Nepeta hindostana (Roth) Haines, Nepeta graciliflora Benth. and Nepeta cataria L. from India

Document Type : Original article

Authors

1 Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar-263145 Uttarakhand, India

2 Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar-263145 Uttarakhand, India;

Abstract

Background & Aim:Intraditional medicine system, Nepeta species are widely used to reduce chicken pox, tuberculosis, malaria, pneumonia, influenza, measles, stomach disorders, eye complaints, respiratory disorders, asthma, colds, coughs etc. The aim of the present study was to evaluate the chemical composition and biological activities of the essential oils from three species of genus Nepeta viz: Nepeta hindostana (Roth) Haines (NHO), Nepeta graciliflora Benth (NGO) and Nepeta cataria L (NCO).
Experimental: The essential oils were analysed by the combination of GC and GC-MS. Antioxidant activity was tested by using reducing power assay, metal chelating of Fe2 +assay, and DPPH radical scavenging assay. In-vitro antinflammatory activity was evaluated using albumin denaturation assay and anti-diabetic activity was determined by using α-amylase assay.
Results: The major components present in NCO, NHO and NGO were cis-nepetalactone (69.78%), β-farnesene (43.41%) and sesquisabinene (28.75%), respectively. NCO showed the highest percentage inhibition of DPPH radical (IC50=5.89 µl/ml) followed by NHO (IC50=8.63 µl/ml) and then NGO (IC50=13.81 µl/ml). In terms of reducing power assay and metal chelating of Fe2+  assay, the highest antioxidant activity was also shown by NCO. Among the tested essential oil, NCO showed highest in-vitro anti-inflammatory potential (IC50 18.463±0.14 µg/ml) followed by NGO and NHO with IC50 22.035±0.11 µg/ml and 26.17±0.14 µg/ml, respectively. NHO showed maximum antidiabetic activity with IC50 8.92±0.10 µg/ml of α-amylase.
Recommended applications/industries: On the basis of present research work it is marked that the essential oil of Nepeta hindostana (Roth) Haines, Nepeta graciliflora Benth. and Nepeta cataria L. is a potent antioxidant, anti-inflammatory and anti-diabetic agent indicating their potentiality in the field of food, pharmaceutical and cosmetic industry

Keywords


Article Title [فارسی]

ترکیب شیمیایی و فعالیتهای بیولوژیکی Nepeta hindostana (Roth) Haines، Nepeta graciliflora Benth. و Nepeta cataria L. از هند

Authors [فارسی]

  • مونیکا جوشی 1
  • راوندرا کومار 1
  • ام پراکاش 1
  • آنیل پانت 1
  • راوات 2
1 گروه شیمی ، دانشکده علوم پایه و علوم انسانی ، دانشگاه کشاورزی و فناوری، ایالات متحده ، هند.
2 گروه علوم زیستی ، کالج علوم پایه و علوم انسانی دانشگاه کشاورزی و فناوری ، ایالات متحده، هند.
Abstract [فارسی]

Background & Aim:Intraditional medicine system, Nepeta species are widely used to reduce chicken pox, tuberculosis, malaria, pneumonia, influenza, measles, stomach disorders, eye complaints, respiratory disorders, asthma, colds, coughs etc. The aim of the present study was to evaluate the chemical composition and biological activities of the essential oils from three species of genus Nepeta viz: Nepeta hindostana (Roth) Haines (NHO), Nepeta graciliflora Benth (NGO) and Nepeta cataria L (NCO).
Experimental: The essential oils were analysed by the combination of GC and GC-MS. Antioxidant activity was tested by using reducing power assay, metal chelating of Fe2 +assay, and DPPH radical scavenging assay. In-vitro antinflammatory activity was evaluated using albumin denaturation assay and anti-diabetic activity was determined by using α-amylase assay.
Results: The major components present in NCO, NHO and NGO were cis-nepetalactone (69.78%), β-farnesene (43.41%) and sesquisabinene (28.75%), respectively. NCO showed the highest percentage inhibition of DPPH radical (IC50=5.89 µl/ml) followed by NHO (IC50=8.63 µl/ml) and then NGO (IC50=13.81 µl/ml). In terms of reducing power assay and metal chelating of Fe2+  assay, the highest antioxidant activity was also shown by NCO. Among the tested essential oil, NCO showed highest in-vitro anti-inflammatory potential (IC50 18.463±0.14 µg/ml) followed by NGO and NHO with IC50 22.035±0.11 µg/ml and 26.17±0.14 µg/ml, respectively. NHO showed maximum antidiabetic activity with IC50 8.92±0.10 µg/ml of α-amylase.
Recommended applications/industries: On the basis of present research work it is marked that the essential oil of Nepeta hindostana (Roth) Haines, Nepeta graciliflora Benth. and Nepeta cataria L. is a potent antioxidant, anti-inflammatory and anti-diabetic agent indicating their potentiality in the field of food, pharmaceutical and cosmetic industry.

Keywords [فارسی]

  • Nepeta species
  • cis-nepetalactone
  • β-farnesene
  • sesquisabinene
  • antioxidant activity
  • antidiabetic activity
Adams, R.P. 2007. Identification of essential oil components by gas chromatography mass spectroscopy. Allured Publishing Corporation, USA.
Adiguzel, A., Ozer, H., Sokmen, M., Gulluce, M., Sokmen, A., Kilic, H., Sahin, F. and Baris, O.Z. 2009. Antimicrobial and antioxidant activity of the essential oil and methanol extract of Nepeta cataria. Polish Journal of  Microbiology, 58(1):69-76.
Asgarpanah, J., Sarabian, S. and Ziarati, P. 2014. Essential oil of Nepeta genus (Lamiaceae) from Iran: a review. Journal of  Essential Oil Research, 26(1):1-12.
Ashrafi, B., Ramak, P., Ezatpour, B. and Talei, R.G. 2019. Biological activity and chemical composition of the essential oil of Nepeta cataria L. Journal of Research in  Pharmacy,  23(2):336-343.
Bhat, J.A., Kumar, M. and Bussmann, R.W. 2013. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. Journal of  Ethnobiology and  Ethnomedicine,  9(1): 1-18.
Bisht, D.S., Padalia, R.C., Singh, L., Pande, V., Lal, P. and Mathela, C.S. 2010. Constituents and antimicrobial activity of the essential oils of six Himalayan Nepeta species. Journal of the  Serbian Chemical Society, 75(6): 739-747.
Bisht, M., Sharma, S. and Mathela, C.S. 1997. Investigation of Himalayan Nepeta Species VII: essential oil of Nepeta  spicata Benth.  Asian Journal of  Chemistry, 9(4): 612.
Bisht, V.K., Rana, C.S., Negi, J.S., Bhandari, A.K., Purohit, V., Kuniyal, C.P. and Sundriyal, R.C. 2012. Lamiaceous ethno-medico-botanicals in Uttarakhand Himalaya, India. Journal of  Medicinal Plants Research, 6(26): 4281-4291.
Botterweck, A.A.M., Verhagen, H., Goldbohm, R.A., Kleinjans, J. and Van den Brandt, P.A. 2000.  Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands cohort study. Food and  Chemical Toxicology, 38(7):599-605.
Clevenger, J.F. 1928. Apparatus for the determination of volatile oil. Journal of Pharmaceutical Sciences, 17(4): 345-349.
Dhami, A., Singh, A., Palariya, D., Kumar, R., Prakash, O., Rawat, D. S. and Pant, A. K. 2019. α-Pinene rich bark essential oils of Zanthoxylum armatum DC. from three different altitudes of Uttarakhand, India and their antioxidant, in vitro anti-inflammatory and antibacterial activity. Journal of  Essential Oil Bearing Plants, 22(3): 660-674.
Devi, S. and Singh, R. 2016. Antidiabetic activity of methanolic extract of Nepeta hindostana herb in streptozotocin induced diabetes in rats. International Journal of Pharmaceutical Sciences. 8(7): 330-5.
Formisano, C., Rigano, D. and Senatore, F. 2011. Chemical Constituents and Biological Activities of Nepeta Species. Chemistry and Biodiversity, 8:1783-1818.
Gairola, K., Gururani, S., Kumar, R., Prakash, O., Agarwal, S. and Dubey, S.K. 2021. Phytochemical composition, antioxidant, and anti-inflammatory activities of essential oil of Acmella uliginosa (Sw.) Cass. grown in North India Terai region of Uttarakhand. Trends in Phytochemical Research, 5(1): 44-52.
Gilani, A.H., Shah, A.J., Zubair, A., Khalid, S., Kiani, J., Ahmed, A., Rasheed, M.  and Ahmad, V.U. 2009. Chemical composition and mechanisms underlying the spasmolytic and bronchodilatory properties of the essential oil of Nepeta cataria L. Journal of Ethnopharmacology, 121(3):405-411
Hassan, T., Rather, M.A., Shawl, A.S., Bhat, K.A., Bhat, H.M., Dar, B.A., Dar, G.H. and Qurishi, M.A. 2011. Chemical composition of the essential oils of Nepeta laevigata and Nepeta elliptica from India.  Chemistry of Natural Compounds,47(3):456-458.
Herron, S. 2003. Catnip, Nepeta cataria, a morphological comparison of mutant and wild type specimens to gain an ethnobotanical perspective. Economic Botany, 57(1): 135-142.
Hussain, J., Rehman, N.U., Hussain, H., Al-Harrasi, A., Ali, L., Rizvi, T.S. and Ahmad, M. 2012. Analgesic, anti-inflammatory, and CNS depressant activities of new constituents of Nepeta clarkei. Fitoterapia, 83(3):593-598.
Jeong, J.B., Park, J.H., Lee, H.K., Ju, S.Y., Hong, S.C., Lee, J.R., Chung, G.Y., Lim, J.H. and Jeong, H.J.   2009. Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect. Food and  Chemical Toxicology, 47(3): 525-529.
Jianu, C., Moleriu, R., Stoin, D., Cocan, I., Bujanca, G., Pop, G., Lukinich-Gruia, A.T., Muntea, D., Rusu, L.C. and Horha, D.I. 2021. Antioxidant and antibacterial activity of Nepeta × faassenii Bergmans ex stearn essential oil. Applied Science, 11:442.
Joshi, R.K. and Mathela, C.S. 2013. Chemical constituents of leaf essential oil from Nepeta laevigata (D. Don) Hand.-Mazz from Kumaun Himalaya. American Journal of Essential Oils and Natural Products, 1:7-10.
Kar, B., Kumar, R.S., Karmakar, I., Dola, N., Bala, A., Mazumder, U.K. and Hadar, P.K. 2012. Antioxidant and in-vitro anti-inflammatory activities of Mimusops elengi leaves. Asian Pacific Journal of  Tropical Biomedicine, 2(2): S976-S980.
Kim, D.S., Lee, H.J., Jeon, Y.D., Han, Y.H., Kee, J.Y., Kim, H.J., Shin, H.J., Kang, J.W., Lee, B.S., Kim, S.H., Kim, S.J., Park, S.H., Choi, B.M., Park, S.J., Um, J.Y. and Hong, S.H. 2015. Alpha-pinene exhibits anti-inflammatory activity through the suppression of mapks and the nf-κb pathway in mouse peritoneal macrophages. Am Journal of  Chinese Medicine, 43(4):731-742.
Kumar, R., Kumar, R., Prakash, O., Srivastava, R.M.  and Pant, A.K. 2019. Chemical composition, in vitro antioxidant, anti-inflammatory and antifeedant properties in the essential oil of Asian marsh weed Limnophila indica L. (Druce). Journal of Pharmacognosy and Phytochemistry, 8(1): 1689-1694.
Kumar, R., Prakash, O., Pant, A.K., Isidorov Valery, A. and Mathela, C.S. 2012.Chemical composition, antioxidant and myorelaxant activity of essential oils of Globba sessiliflora Sims. Journal of Essential Oil Research, 24(4):385-391.
Kumar, V., Mathela, C.S., Kumar, M. and Tewari, G. 2019. Antioxidant potential of essential oils from some Himalayan Asteraceae and Lamiaceae species. Medicine in Drug Discovery, 1: 100004.
Lu, M., Yuan, B., Zeng, M., and Chen, J. 2011. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Research International, 44(2): 530-536.
Narkhede, M.B., Ajimire, P.V., Wagh, A.E., Mohan, M. and Shivashanmugam, A.T. 2011. In vitro antidiabetic activity of Caesalpina digyna (R.) methanol root extract. Asian Journal of  Plant Science and Research,1(2):101-106.
Nazir, N., Zahoor, M., Uddin, F.and Nisar, M. 2021. Chemical composition, in vitro antioxidant, anticholinesterase, and antidiabetic potential of essential oil of Elaeagnus umbellata Thunb. BMC Complementary Medicine and Therapies,21(1): 1-13.
Navarra, M, Mannucci, C, Delbò, M. and Calapai, G. 2015. Citrus bergamia essential oil: from basic research to clinical application. Frontiers in Pharmacology, 6: 36.
Oboh, G., Olasehinde, T.A. and Ademosun, A.O. 2017. Inhibition of enzymes linked to type-2 diabetes and hypertension by essential oils from peels of orange and lemon. International journal of food properties, 20(sup1):S586-S594.
Öztürk, A. and Özbek, H. 2005. The anti-inflammatory activity of Eugenia caryophyllata essential oil: an animal model of anti-inflammatory activity. European Journal of General Medicine, 2(4):159-163.
Pal, J., Singh, S.P., Prakash, O., Batra, M., Pant, A.K. and Mathela, C.S. 2011. Hepatoprotective and antioxidant activity of Zingiber chrysanthum Rosec. rhizomes. Asian journal of traditional medicines, 6(6):242-251.
Palariya, D., Singh, A., Dhami, A., Kumar, R., Pant, A. K. and Prakash, O., 2019. Phytochemical analysis and screening of antioxidant, antibacterial and antiinflammatory activity of essential oil of Premna mucronata Roxb. leaves. Trends in Phytochemical Research, 3(4):275-286
Pandey, A.K., Mohan, M., Singh, P. and Tripathi, N.N. 2015. Chemical composition, antioxidant and antimicrobial activities of the essential oil of Nepeta hindostana (Roth) Haines from India. Records of Natural Products, 9(2): 224.
Parki, A., Chaubey, P., Prakash, O., Kumar, R. and Pant, A.K. 2017. Seasonal variation in essential oil compositions and antioxidant properties of Acorus calamus L. accessions. Medicines, 4(4): 81.
Peterson, C.J., Nemetz, L.T., Jones, L.M. and Coats, J.R. 2002. Behavioral activity of catnip (Lamiaceae) essential oil components to the German cockroach (Blattodea: Blattellidae). Journal of Economic Entomology, 95(2): 377-380.
Phondani, P.C., Maikhuri, R.K., Rawat, L.S., Farooquee, N.A., Kala, C.P., Vishvakarma, S.R., Rao, K.S. and Saxena, K.G. 2010. Ethnobotanical uses of plants among the Bhotiya tribal communities of Niti Valley in Central Himalaya, India. Ethnobotany Research and Applications,  8: 233–244.
Rather, M.A. and Hassan, T. 2011. Analysis of the diterpene rich essential oil of Nepeta clarkei Hooke. from Kashmir Himalayas by capillary GC-MS. International Journal of Chemtech Research, 3:959–962.
Ricci, E.L., Toyama, D.O., Lago, J.H.G., Romoff, P., Kirsten, T.B., Reis-Silva, T.M.  and Bernardi, M.M. 2010. Anti-nociceptive and anti-inflammatory actions of Nepeta cataria L. var. citridora (Becker) Balb. essential oil in mice. Journal of Health Science Institute, 28(3): 289–293.
Reichert, W., Ejercito, J., Guda, T., Dong, X., Wu, Q., Ray, A., and Simon, J. E. 2019. Repellency assessment of Nepeta cataria essential oils and isolated nepetalactones on Aedes aegypt. Scientific Reports.
Sharma, A., Cooper, R., Bhardwaj, G. and Cannoo, D.S. 2021. The genus Nepeta: traditional uses, phytochemicals and pharmacacological activities. Journal of Ethnopharmacology, 268: 113679.
Sharma, P., Shah, G.C., Sharma, R. and  Dhyani, P. 2015. Chemical composition and antibacterial activity of essential      oil          of           Nepeta graciliflora Benth. (Lamiaceae). Natural Product Research, 30(11):1332-1334.
Sim, L., Jayakanthan, K., Mohan, S. and Nasi, R. 2010. New glucosidase inhibitors from an Ayurvedic herbal treatment fot type 2 diabetes: structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulate. Biochemistry, 49:443-51.
Goswami, S., Kanyal, J., Prakash, O., Kumar, R., Rawat, D.S., Srivastava, R.M. and  Pant, A.K. 2019. Chemical composition, antioxidant, antifungal and antifeedant activity of the salvia reflexa hornem. essential oil. Asian Journal of Applied Science, 12(4):185-191.
Suschke, U., Sporer, F., Schneele, J., Geiss, H,K. and Reichling, J. 2007. Antibacterial and cytotoxic activity of Nepeta cataria L., N. cataria var. citriodora (Beck.) Balb. and Melissa officinalis L. essential oils. Natural Product Communications, 2(12): 1277-1286.
Thappa, R.K., Agarwal, S.G., Srivastava, T.N. and  Kapahi, B.K. 2001. Essential oils of four Himalayan Nepeta species. Journal of Essential Oil Research, 13(3):189-191.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. and Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology,39(1): 44-84
Yuan, Y.W., Mabberly, D.J., Steane, D.A. and Olmstead, R.G. 2010. Further disintegration and redefinition of Lamiaceae: implication for the understanding of the evolution of an intriguing breeding strategy. Taxon, 59(1): 125-133.