Identification of the chemical components of \((Salvia \ spinosa \ L.)\) in Isfahan climatic conditions

Saied Salehi\(^1\), Ahmad Reza Golparvar\(^2\)*, Amin Hadipanah\(^3\)

\(^1\)Department of Agronomy, College of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran;

\(^2\)Department of Agronomy and plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran;

\(^*\)Email: dragolparvar@gmail.com

\(^3\)Department of Horticulture, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran;

ABSTRACT

Background & Aim: \((Salvia \ spinosa \ L.)\) is perennial shrub and aromatic plant belongs to Lamiaceae family. \(S.\)\(\)\(s\)\(p\)\(i\)\(n\)\(o\)\(s\)\(a\) growing wild in Iran. The aim of this study was to identify of the chemical components of \(S.\)\(s\)\(p\)\(i\)\(n\)\(o\)\(s\)\(a\) in Isfahan climatic conditions.

Experimental: The aerial parts of the plants were collected from Isfahan province in 2014. The essential oil was extracted by a Clevenger approach and analyzed using GC/MS.

Results: In total, 21 compounds were identified in the essential oil from the aerial parts \(S.\)\(s\)\(p\)\(i\)\(n\)\(o\)\(s\)\(a\). The results obtained in our study indicated that the major components in the oil were \(\alpha\)-terpinolene (32.731%), \(\beta\)-ocimene (30.915%), \(\beta\)-patchoulene (12.779%), \(\beta\)-bourbonene (4.263%) and 1,8-cineol (2.883%).

Recommended applications/industries: there is only little report on the essential oil composition of \(S.\)\(s\)\(p\)\(i\)\(n\)\(o\)\(s\)\(a\) from Iran, \(S.\)\(s\)\(p\)\(i\)\(n\)\(o\)\(s\)\(a\) can use in traditional medicines for activity antimicrobial.

1. Introduction

The genus \(Salvia\) the largest genus (Lamiaceae: subfamily Nepetoideae, tribe Mentheae) represents a cosmopolitan assemblage of nearly 1000 species worldwide, there are 58 salvia species growing naturally in Iran, 17 species endemic (Walker *et al.* 2004; Mozaffarian, 1996). The genus \(Salvia\) in three regions of the world: Central and South America (500 spp.), western Asia (200 spp.) and eastern Asia (100 spp.). The gametic chromosome number for this species \(n=10\) is the first to be reported. The somatic count was found to be \(2n=20\) (Walker and Sytsma, 2007).

Latin word “salvare” is the source of the word Salvia, which means to restore to health or to secure health. Ancient authors called it \(elelishpakon\) (Rivera *et al.*, 1994). \(Salvia \ spinosa\) is a polymorphic taxon with high morphological variability (Kharazian 2012). Kharazian (2012) also showed that \(S. \)\(s\)\(p\)\(i\)\(n\)\(o\)\(s\)\(a\) was closely related morphologically but differs in diagnostic characters such as the form of the leaves and calyx.
Salvia species are used in traditional medicines all around the world, possessing antioxidant, antibacterial, antidiabetic, anti-tumor, antiplasmodial and anti-inflammatory activities (Kamatou et al., 2008). Study Amin et al., (2006) showed the major components (Salvia spinosa L.) a potent antimicrobial activity against Pseudomonas aeroginosa (2.06 µL/disc).

Baheer Nik and Mirza (2005) reported the major components oil (Salvia spinosa L.) collected from Dizin (Tehran) province were β-ocimene (12.3%), β-caryophyllene (10.2%), isopentyl isovalerate (9.5%), α-gurjunene (7.2%) and isoarnyl, 2-methyl butyrate (7%).

According to Amin et al., (2006) the major components (Salvia spinosa L.) collected from Baraghan (Tehran) province were 1,8-cineole (32.87%), β-ocimene (20.03%), germacrene-D (10.66%), 2-butyli thiophene (9.83%), trans caryophyllene (5.01%) and 3-butyli thiophene (3.49%).

Golparvar and Hadipanah (2013) reported the major components (Salvia officinalis L.) cultivated in Isfahan climatic conditions were; camphor (17.75%), thujone (13.25%), 1,8-cineole (13.03%), α-pinene (6%), β-thujone (5.85%), α-humulene (5.48%), β-caryophyllene (5.07%) and borneol (3.72%). There are many reports in the literature showing the variation in the yield and chemical composition of the essential oil with respect to geographical regions (Vannuuren et al., 2007). The aim of this study was to identify the chemical components of Salvia spinosa L. in Isfahan climatic conditions.

2. Materials and Methods

2.1. Plants materials

The aerial parts of the plant samples of Salvia spinosa L. were collected from (Bakhtiardasht mountain) Shahin Shahr county (26 km North of Isfahan), Isfahan province, in center Iran (32°, 87° N and 51°, 57° E, 1595 m above sea level), during spring 2014. Climate in this province varies from semi-dry.

2.2. Essential oil extraction

The fresh aerial of S.spinosa were dried inside for six days at room temperature (25 ± 5 °C), and the ground to fine a powder using Moulinex food processor. The essential oil was extracted from 50 g of ground tissue in 1 L of water contained in a 2 L flask and heated by heating jacket at 100 °C for 3 h in a Clevenger–type apparatus, according to producers outlined British Pharmacopoeia. The collected essential oil was dried over anhydrous sodium sulphate and stored at 4 °C until analyzed.

2.3. GC/MS analysis

GC/MS analysis was carried out with an Agilent 5975 GC-MSD system. HP-5MS column (30 m x 0.25 mm, 0.25 μm film thickness) was used with helium as carrier gas with flow rate of 1.0 mL/min. The oven temperature was kept 20 °C at 50 °C for 4 min and programmed to 280 °C at a rate of 5 °C /min, and kept 20 °C constant at 280 °C for 5 min, at split mode. The injector temperature was at 20°C at 280 °C. Transfer 20 line temperatures 280 °C. MS were taken at 70 eV. Mass range was from m/z 35 to 450.

3. Results and discussion

Results of GC/MS indicated that 21 compounds were identified in the essential oil from the aerial parts of S.spinosa. The results indicated that the major components were α-terpinolene (32.731%), β-ocimene (30.915%), β-patchoulene (12.779%), β-bourbonene (4.263%) and 1,8-cineole (2.883%) (Table 1 & Fig. 1).

Aboee-Mehrizi et al., (2013) reported the major components the essential oils of Salvia compressa growing wild in Iran were α-pinen (70.93%), borneol (7a,1%), and camphen (5.92%).

The oil obtained from the aerial parts of S. lanigera and S. spinosa were rich in thymol (54.9% and 68.9%, respectively) (Flamini et al., 2007). In this study, while thymol was not found in S. spinosa studied but β-ocimene was detected at the similar percentages with the results Baheer Nik and Mirza (2005) and Amin et al., (2006).

The chemical composition of plants is known to be influenced by several external factors including climate, as some compounds may be accumulated at a particular period to respond to environmental changes. Plant material collected at different times of the year may contain different novel compounds with other bioactivities. The effects of seasonal variations on the chemical and biological characteristics of some essential oils of the family Lamiaceae have been reported in the literature (Kofidis et al., 2004). Feo et al., (2009) reported the major components of S. hierosolymitana Boiss. and S. multicaulis Vahl. var. simplicifolia Boiss. collected in Lebanon were carbonylic compounds (17%) characterizes the oil from
S. hierosolymitana, while S. multicaulis var. simplicifolia oil is rich of monoterpenes (34.5%) and sesquiterpenes (46.9%). Feo et al., (2010) reported the major components the essential oils of Salvia africana L., Salvia elegans Vahl, Salvia greggii A. Gray, Salvia mellifera Green and Salvia munzii Epling, cultivated in Eboli (Salerno, Southern Italy). In all, 88 compounds were identified, 54 for S. africana, accounting for 95.4% of the total oil, 55 for S. elegans (92.9%), 50 for S. greggii (96.9%), 54 for S. mellifera (90.4%) and 47 for S. munzii (97.5%), respectively.

Table 1. Chemical composition of the essential oil from Salvia spinosa L.

<table>
<thead>
<tr>
<th>No.</th>
<th>Compounds</th>
<th>RI b</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sabinene</td>
<td>970</td>
<td>0.501</td>
</tr>
<tr>
<td>2</td>
<td>p-Cymene</td>
<td>1019</td>
<td>0.189</td>
</tr>
<tr>
<td>3</td>
<td>Acetaldehyde</td>
<td>1024</td>
<td>0.273</td>
</tr>
<tr>
<td>4</td>
<td>4-Amino butanoic acid</td>
<td>1025</td>
<td>0.259</td>
</tr>
<tr>
<td>5</td>
<td>1,8-cineole</td>
<td>1034</td>
<td>2.883</td>
</tr>
<tr>
<td>6</td>
<td>β-Cymene</td>
<td>1043</td>
<td>1.134</td>
</tr>
<tr>
<td>7</td>
<td>Butanoic acid, 2-methyl-, pentyl ester</td>
<td>1054</td>
<td>0.824</td>
</tr>
<tr>
<td>8</td>
<td>β-Ocimene</td>
<td>1062</td>
<td>30.915</td>
</tr>
<tr>
<td>9</td>
<td>α-Terpinolene</td>
<td>1071</td>
<td>32.731</td>
</tr>
<tr>
<td>10</td>
<td>1,3-Cyclohexadiene, 1,5,5,6-tetram ethyl</td>
<td>1124</td>
<td>2.843</td>
</tr>
<tr>
<td>11</td>
<td>Butanoic acid, octyl ester</td>
<td>1175</td>
<td>0.884</td>
</tr>
<tr>
<td>12</td>
<td>Camphene</td>
<td>1235</td>
<td>1.085</td>
</tr>
<tr>
<td>13</td>
<td>Heptane, 3-methyl-</td>
<td>1285</td>
<td>2.239</td>
</tr>
<tr>
<td>14</td>
<td>Butanoic acid, 3-methyl-, hexyl ester</td>
<td>1294</td>
<td>0.298</td>
</tr>
<tr>
<td>15</td>
<td>Octane, 3,4-dimethyl</td>
<td>1298</td>
<td>0.720</td>
</tr>
<tr>
<td>16</td>
<td>Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-,(1α,2β,4β)</td>
<td>1345</td>
<td>2.298</td>
</tr>
<tr>
<td>17</td>
<td>β-Patchoulene</td>
<td>1368</td>
<td>12.779</td>
</tr>
<tr>
<td>18</td>
<td>β-Bourbonone</td>
<td>1385</td>
<td>4.263</td>
</tr>
<tr>
<td>19</td>
<td>N-Benzoyl-3-methyleucine</td>
<td>1394</td>
<td>1.264</td>
</tr>
<tr>
<td>20</td>
<td>4-Amino-furazan-3-yl-phenyl-methanone</td>
<td>1410</td>
<td>0.165</td>
</tr>
<tr>
<td>21</td>
<td>β-Gurjimene</td>
<td>1418</td>
<td>1.452</td>
</tr>
</tbody>
</table>

a Compounds listed in order of elution
b RT (Retention Indices)

Rustaiyan et al., (2009) reported the main components found in the oil of S. compressa collected at Tange- malavi, was α-pinene (18.4%), while in the oil of the plant collected at Mamolan to Pol-e-dokhtar, was, α-pinene (4.8%).

Mirza and Baher Nik (2007) reported the major constituents of the essential oil of (Salvia lachnocalyx Hedge) collected from Fars province were bicyclogermacrene (31.3%), α-pinene (13.2%), sabinene (11.7%) and β-pinene (10.3%). Dzumayer et al., (1995) reported the major constituents of the essential oil (Salvia schimperi Benth.) were Linalool (22-32%) and Linalool acetate (25–51%).

Bagci and Kocak (2008) reported the major constituents of the essential oil of Salvia multicaulis Vahl. Enum. and S. tricochlada Bentham from east Anatolian region (Turkey) were 1,8-cineole (17.0%), camphor (13.2%), α-pinene (9.3%), valeranone(8.5%) and α-eudesmol (5.7%) for S.multicaulis and β-pinene (13.7%), camphor (11.3%), caryophyllene oxide (7.0%), 1,8-cineole (5.9%) and trans-caryophyllene (5.5%) were the major constituents of S. tricochlada. Some of the components isolated from the flowering shoots of S. multicaulis from Iran were bornyl acetate, β-caryophyllene and α-pinene (Ahmadi and Mirza, 1999).

Ghani et al., (2010) reported the major constituents of the essential oil of (Salvia sclarea L.) cultivated in Mashhad climatic conditions were linalool (30.03%), linalyl acetate (23.08%) and α-terpinene (11.13%).

Mirza and Baher Nik (2006) reported the major constituents of the essential oil of Salvia compressa Vent. collected from Jahrom in Fars province were taucadinol (36%), caryophyllene oxide (15.7%), geraniol (10.5%) and borneol (9.3%). Comparison between these results and the results of the other reports showed differences, probably due to that plant varieties or sites, as well as the time of harvesting. The variations in chemical composition of the essential oils with respect to season might have been due to the influence of phenological status, and environmental conditions can influence the regulation of the biosynthesis of essential oil (Masotti et al. 2003).
4. Conclusion

In conclusion, this study demonstrates the occurrence of chemical components of Salvia spinosa L. such as α-terpinolene, β-ocimene, β-patchouliene, β-bourbonene and 1,8-cineol in Isfahan climatic conditions. A comparison of our results with different reports, differences in the volatile composition of the plants could be attributed to genetic (genus, species, and ecotype), chemotype, distinct environmental and climatic conditions, seasonal sampling periods, geographic origins, plant populations, vegetative plant phases, and extraction and quantification methods.

5. Acknowledgement

This research project has been supported by Islamic Azad University, Isfahan (Khorasgan) branch, Isfahan, Iran.

6. References

